- Get link
- X
- Other Apps
🖥️ AI System Architecture
Complete Mermaid JS Implementation for Blogger/BlogSpot
1. Complete AI Architecture Overview
This diagram shows the complete AI system architecture with all major components, including client interfaces, edge computing, cloud services, data layers, and MLOps pipelines.
graph TB
subgraph "Client Layer"
A[🌐 Web Application]
B[📱 Mobile App]
C[🔌 IoT Devices]
D[💬 Chat Interface]
end
subgraph "Edge Computing Layer"
E[⚡ Edge AI Processor]
F[🔒 Local Inference]
G[📊 Real-time Analytics]
E --> H[Edge Cache]
end
subgraph "Cloud Gateway"
I[🔗 API Gateway]
J[🔐 Authentication]
K[⚖️ Load Balancer]
L[📈 Rate Limiter]
end
subgraph "AI Microservices Cluster"
M[🧠 LLM Service
GPT/Llama] N[👁️ Computer Vision
YOLO/CNN] O[🗣️ Speech AI
Whisper/Wav2Vec] P[🎯 Recommendation
Engine] Q[🔍 Search &
Retrieval] R[📝 Document
Processor] end subgraph "Model Management" S[📦 Model Registry] T[🔄 Version Control] U[🧪 A/B Testing] V[🎯 Canary Deployment] end subgraph "Data Storage Layer" W[📊 Vector Database
Pinecone/Weaviate] X[🗃️ Relational DB
PostgreSQL] Y[📁 NoSQL DB
MongoDB] Z[🗄️ Object Storage
S3/MinIO] AA[🔗 Graph Database
Neo4j] end subgraph "MLOps Pipeline" BB[📥 Data Ingestion] CC[🧹 Data Cleaning] DD[🏷️ Data Labeling] EE[⚙️ Feature Engineering] FF[🏋️ Model Training] GG[📊 Model Evaluation] HH[🚀 Model Deployment] end subgraph "Monitoring & Observability" II[📈 Performance Metrics] JJ[🚨 Alert System] KK[📝 Logging] LL[🔍 Tracing] end %% Connections A --> I B --> I C --> E E --> I D --> I I --> K K --> M K --> N K --> O K --> P K --> Q K --> R M --> W N --> Z O --> Y P --> AA Q --> W R --> Y HH --> S S --> T T --> U U --> V BB --> CC --> DD --> EE --> FF --> GG --> HH M --> II N --> II O --> II II --> JJ JJ --> KK KK --> LL classDef client fill:#e3f2fd,stroke:#2196f3 classDef edge fill:#e8f5e8,stroke:#4caf50 classDef gateway fill:#fff3e0,stroke:#ff9800 classDef microservice fill:#f3e5f5,stroke:#9c27b0 classDef model fill:#e8eaf6,stroke:#3f51b5 classDef storage fill:#e0f2f1,stroke:#009688 classDef mlops fill:#fff8e1,stroke:#ffb300 classDef monitoring fill:#ffebee,stroke:#f44336 class A,B,C,D client class E,F,G,H edge class I,J,K,L gateway class M,N,O,P,Q,R microservice class S,T,U,V model class W,X,Y,Z,AA storage class BB,CC,DD,EE,FF,GG,HH mlops class II,JJ,KK,LL monitoring
GPT/Llama] N[👁️ Computer Vision
YOLO/CNN] O[🗣️ Speech AI
Whisper/Wav2Vec] P[🎯 Recommendation
Engine] Q[🔍 Search &
Retrieval] R[📝 Document
Processor] end subgraph "Model Management" S[📦 Model Registry] T[🔄 Version Control] U[🧪 A/B Testing] V[🎯 Canary Deployment] end subgraph "Data Storage Layer" W[📊 Vector Database
Pinecone/Weaviate] X[🗃️ Relational DB
PostgreSQL] Y[📁 NoSQL DB
MongoDB] Z[🗄️ Object Storage
S3/MinIO] AA[🔗 Graph Database
Neo4j] end subgraph "MLOps Pipeline" BB[📥 Data Ingestion] CC[🧹 Data Cleaning] DD[🏷️ Data Labeling] EE[⚙️ Feature Engineering] FF[🏋️ Model Training] GG[📊 Model Evaluation] HH[🚀 Model Deployment] end subgraph "Monitoring & Observability" II[📈 Performance Metrics] JJ[🚨 Alert System] KK[📝 Logging] LL[🔍 Tracing] end %% Connections A --> I B --> I C --> E E --> I D --> I I --> K K --> M K --> N K --> O K --> P K --> Q K --> R M --> W N --> Z O --> Y P --> AA Q --> W R --> Y HH --> S S --> T T --> U U --> V BB --> CC --> DD --> EE --> FF --> GG --> HH M --> II N --> II O --> II II --> JJ JJ --> KK KK --> LL classDef client fill:#e3f2fd,stroke:#2196f3 classDef edge fill:#e8f5e8,stroke:#4caf50 classDef gateway fill:#fff3e0,stroke:#ff9800 classDef microservice fill:#f3e5f5,stroke:#9c27b0 classDef model fill:#e8eaf6,stroke:#3f51b5 classDef storage fill:#e0f2f1,stroke:#009688 classDef mlops fill:#fff8e1,stroke:#ffb300 classDef monitoring fill:#ffebee,stroke:#f44336 class A,B,C,D client class E,F,G,H edge class I,J,K,L gateway class M,N,O,P,Q,R microservice class S,T,U,V model class W,X,Y,Z,AA storage class BB,CC,DD,EE,FF,GG,HH mlops class II,JJ,KK,LL monitoring
💡 Note: This architecture supports multiple AI services running as independent microservices,
allowing for scalability and independent deployment of each AI capability.
2. AI Request Processing Flow
Detailed workflow showing how user requests are processed through the AI system, from input to response generation.
sequenceDiagram
participant U as User
participant C as Client App
participant G as API Gateway
participant A as Auth Service
participant R as Request Router
participant LLM as LLM Service
participant CV as CV Service
participant KB as Knowledge Base
participant DB as Vector DB
participant Cache as Cache Layer
participant Log as Logger
U->>C: Submit Request (Text/Image/Audio)
C->>G: HTTP/WebSocket Request
G->>A: Validate Token
A-->>G: Authentication Result
alt Authentication Failed
G-->>C: 401 Unauthorized
C-->>U: Show Error
else Authentication Success
G->>R: Route Request
R->>Log: Log Request
alt Text Request
R->>LLM: Process NLP
LLM->>KB: Retrieve Context
KB->>DB: Query Embeddings
DB-->>KB: Similar Documents
KB-->>LLM: Enhanced Context
LLM->>Cache: Check Response Cache
alt Cache Hit
Cache-->>LLM: Cached Response
else Cache Miss
LLM->>LLM: Generate Response
LLM->>Cache: Store Response
end
LLM-->>R: AI Response
else Image Request
R->>CV: Process Image
CV->>CV: Run Inference
CV->>Log: Log Results
CV-->>R: Image Analysis
else Audio Request
R->>LLM: Transcribe Audio
LLM-->>R: Text Transcription
R->>LLM: Process Text
LLM-->>R: Audio Response
end
R->>G: Formatted Response
G->>C: HTTP Response
C->>U: Display Result
R->>Log: Log Processing Time
Log->>Log: Update Metrics
end
3. MLOps Pipeline Architecture
The complete machine learning operations pipeline showing the journey from data collection to model deployment and monitoring.
flowchart TD
subgraph "Phase 1: Data Management"
A[📥 Data Collection] --> B[🧪 Data Validation]
B --> C[🔒 Data Versioning
DVC/Delta Lake] C --> D[🏷️ Data Labeling
Label Studio/SageMaker] D --> E[📊 Dataset Creation] end subgraph "Phase 2: Experimentation" E --> F[⚙️ Feature Engineering] F --> G[🧮 Feature Store
Feast/Tecton] G --> H[🔬 Experiment Tracking
MLflow/Weights & Biases] H --> I[🤖 Model Training
PyTorch/TensorFlow] end subgraph "Phase 3: Model Management" I --> J[📈 Model Evaluation] J --> K{Performance Check} K -->|Pass| L[📦 Model Registry
MLflow Registry] K -->|Fail| M[🔄 Retrain Model] M --> F L --> N[🧪 Model Testing
Unit/Integration] N --> O[✅ Model Approval] end subgraph "Phase 4: Deployment" O --> P[🚀 Model Packaging
Docker/ONNX] P --> Q[🌐 Model Serving
KServe/Triton] Q --> R[⚖️ Load Balancing] R --> S[🔄 Canary Deployment] S --> T[📊 A/B Testing] end subgraph "Phase 5: Monitoring" T --> U[👀 Model Monitoring
Evidently/WhyLabs] U --> V[📈 Performance Metrics] V --> W[🚨 Alert System] W --> X{Drift Detected?} X -->|Yes| M X -->|No| Y[✅ Model in Production] end %% Styling classDef phase1 fill:#e3f2fd,stroke:#2196f3 classDef phase2 fill:#e8f5e8,stroke:#4caf50 classDef phase3 fill:#fff3e0,stroke:#ff9800 classDef phase4 fill:#f3e5f5,stroke:#9c27b0 classDef phase5 fill:#ffebee,stroke:#f44336 class A,B,C,D,E phase1 class F,G,H,I phase2 class J,K,L,M,N,O phase3 class P,Q,R,S,T phase4 class U,V,W,X,Y phase5
DVC/Delta Lake] C --> D[🏷️ Data Labeling
Label Studio/SageMaker] D --> E[📊 Dataset Creation] end subgraph "Phase 2: Experimentation" E --> F[⚙️ Feature Engineering] F --> G[🧮 Feature Store
Feast/Tecton] G --> H[🔬 Experiment Tracking
MLflow/Weights & Biases] H --> I[🤖 Model Training
PyTorch/TensorFlow] end subgraph "Phase 3: Model Management" I --> J[📈 Model Evaluation] J --> K{Performance Check} K -->|Pass| L[📦 Model Registry
MLflow Registry] K -->|Fail| M[🔄 Retrain Model] M --> F L --> N[🧪 Model Testing
Unit/Integration] N --> O[✅ Model Approval] end subgraph "Phase 4: Deployment" O --> P[🚀 Model Packaging
Docker/ONNX] P --> Q[🌐 Model Serving
KServe/Triton] Q --> R[⚖️ Load Balancing] R --> S[🔄 Canary Deployment] S --> T[📊 A/B Testing] end subgraph "Phase 5: Monitoring" T --> U[👀 Model Monitoring
Evidently/WhyLabs] U --> V[📈 Performance Metrics] V --> W[🚨 Alert System] W --> X{Drift Detected?} X -->|Yes| M X -->|No| Y[✅ Model in Production] end %% Styling classDef phase1 fill:#e3f2fd,stroke:#2196f3 classDef phase2 fill:#e8f5e8,stroke:#4caf50 classDef phase3 fill:#fff3e0,stroke:#ff9800 classDef phase4 fill:#f3e5f5,stroke:#9c27b0 classDef phase5 fill:#ffebee,stroke:#f44336 class A,B,C,D,E phase1 class F,G,H,I phase2 class J,K,L,M,N,O phase3 class P,Q,R,S,T phase4 class U,V,W,X,Y phase5
4. How to Implement in Blogger
Copy and paste this complete code into your Blogger HTML editor. The code includes all necessary Mermaid JS configuration and sample diagrams.
📝 Instructions:
- Go to your Blogger Dashboard
- Click on "Theme" → "Edit HTML"
- Paste the entire code below
- Save and view your blog
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AI Architecture Diagrams</title>
<!-- Mermaid JS -->
<script src="https://cdn.jsdelivr.net/npm/mermaid@10.6.1/dist/mermaid.min.js"></script>
<script>
mermaid.initialize({
startOnLoad: true,
theme: 'default',
securityLevel: 'loose',
flowchart: { curve: 'basis' }
});
</script>
<style>
body {
font-family: Arial, sans-serif;
max-width: 1200px;
margin: 0 auto;
padding: 20px;
background: #f5f5f5;
}
.mermaid {
background: white;
padding: 20px;
border-radius: 8px;
margin: 20px 0;
overflow: auto;
}
.diagram-title {
color: #333;
margin: 30px 0 10px 0;
}
</style>
</head>
<body>
<h1>AI Architecture Diagrams</h1>
<h2 class="diagram-title">Complete AI System</h2>
<div class="mermaid">
graph TB
A[User Input] --> B[API Gateway]
B --> C[Load Balancer]
C --> D[LLM Service]
C --> E[Vision Service]
C --> F[Speech Service]
D --> G[Vector Database]
E --> H[Image Storage]
F --> I[Audio Processor]
G --> J[Response Generator]
H --> J
I --> J
J --> K[User Output]
</div>
<h2 class="diagram-title">MLOps Pipeline</h2>
<div class="mermaid">
flowchart LR
A[Data Collection] --> B[Data Processing]
B --> C[Model Training]
C --> D[Model Evaluation]
D --> E[Model Deployment]
E --> F[Monitoring]
F --> A
</div>
</body>
</html>
✨ Pro Tips:
- Use the Blogger "HTML" editor mode when pasting this code
- Customize colors and styling by modifying the CSS section
- Add more diagrams by copying the mermaid div structure
- Test on mobile devices to ensure responsive display
Comments