Skip to main content

MY ANDROID APKs PAGE
please download here!

CHATGPT: AI SYSTEM ARCHITECTURE

AI Architecture Diagrams

🖥️ AI System Architecture

Complete Mermaid JS Implementation for Blogger/BlogSpot

1. Complete AI Architecture Overview

This diagram shows the complete AI system architecture with all major components, including client interfaces, edge computing, cloud services, data layers, and MLOps pipelines.

graph TB subgraph "Client Layer" A[🌐 Web Application] B[📱 Mobile App] C[🔌 IoT Devices] D[💬 Chat Interface] end subgraph "Edge Computing Layer" E[⚡ Edge AI Processor] F[🔒 Local Inference] G[📊 Real-time Analytics] E --> H[Edge Cache] end subgraph "Cloud Gateway" I[🔗 API Gateway] J[🔐 Authentication] K[⚖️ Load Balancer] L[📈 Rate Limiter] end subgraph "AI Microservices Cluster" M[🧠 LLM Service
GPT/Llama] N[👁️ Computer Vision
YOLO/CNN] O[🗣️ Speech AI
Whisper/Wav2Vec] P[🎯 Recommendation
Engine] Q[🔍 Search &
Retrieval] R[📝 Document
Processor] end subgraph "Model Management" S[📦 Model Registry] T[🔄 Version Control] U[🧪 A/B Testing] V[🎯 Canary Deployment] end subgraph "Data Storage Layer" W[📊 Vector Database
Pinecone/Weaviate] X[🗃️ Relational DB
PostgreSQL] Y[📁 NoSQL DB
MongoDB] Z[🗄️ Object Storage
S3/MinIO] AA[🔗 Graph Database
Neo4j] end subgraph "MLOps Pipeline" BB[📥 Data Ingestion] CC[🧹 Data Cleaning] DD[🏷️ Data Labeling] EE[⚙️ Feature Engineering] FF[🏋️ Model Training] GG[📊 Model Evaluation] HH[🚀 Model Deployment] end subgraph "Monitoring & Observability" II[📈 Performance Metrics] JJ[🚨 Alert System] KK[📝 Logging] LL[🔍 Tracing] end %% Connections A --> I B --> I C --> E E --> I D --> I I --> K K --> M K --> N K --> O K --> P K --> Q K --> R M --> W N --> Z O --> Y P --> AA Q --> W R --> Y HH --> S S --> T T --> U U --> V BB --> CC --> DD --> EE --> FF --> GG --> HH M --> II N --> II O --> II II --> JJ JJ --> KK KK --> LL classDef client fill:#e3f2fd,stroke:#2196f3 classDef edge fill:#e8f5e8,stroke:#4caf50 classDef gateway fill:#fff3e0,stroke:#ff9800 classDef microservice fill:#f3e5f5,stroke:#9c27b0 classDef model fill:#e8eaf6,stroke:#3f51b5 classDef storage fill:#e0f2f1,stroke:#009688 classDef mlops fill:#fff8e1,stroke:#ffb300 classDef monitoring fill:#ffebee,stroke:#f44336 class A,B,C,D client class E,F,G,H edge class I,J,K,L gateway class M,N,O,P,Q,R microservice class S,T,U,V model class W,X,Y,Z,AA storage class BB,CC,DD,EE,FF,GG,HH mlops class II,JJ,KK,LL monitoring
💡 Note: This architecture supports multiple AI services running as independent microservices, allowing for scalability and independent deployment of each AI capability.

2. AI Request Processing Flow

Detailed workflow showing how user requests are processed through the AI system, from input to response generation.

sequenceDiagram participant U as User participant C as Client App participant G as API Gateway participant A as Auth Service participant R as Request Router participant LLM as LLM Service participant CV as CV Service participant KB as Knowledge Base participant DB as Vector DB participant Cache as Cache Layer participant Log as Logger U->>C: Submit Request (Text/Image/Audio) C->>G: HTTP/WebSocket Request G->>A: Validate Token A-->>G: Authentication Result alt Authentication Failed G-->>C: 401 Unauthorized C-->>U: Show Error else Authentication Success G->>R: Route Request R->>Log: Log Request alt Text Request R->>LLM: Process NLP LLM->>KB: Retrieve Context KB->>DB: Query Embeddings DB-->>KB: Similar Documents KB-->>LLM: Enhanced Context LLM->>Cache: Check Response Cache alt Cache Hit Cache-->>LLM: Cached Response else Cache Miss LLM->>LLM: Generate Response LLM->>Cache: Store Response end LLM-->>R: AI Response else Image Request R->>CV: Process Image CV->>CV: Run Inference CV->>Log: Log Results CV-->>R: Image Analysis else Audio Request R->>LLM: Transcribe Audio LLM-->>R: Text Transcription R->>LLM: Process Text LLM-->>R: Audio Response end R->>G: Formatted Response G->>C: HTTP Response C->>U: Display Result R->>Log: Log Processing Time Log->>Log: Update Metrics end

3. MLOps Pipeline Architecture

The complete machine learning operations pipeline showing the journey from data collection to model deployment and monitoring.

flowchart TD subgraph "Phase 1: Data Management" A[📥 Data Collection] --> B[🧪 Data Validation] B --> C[🔒 Data Versioning
DVC/Delta Lake] C --> D[🏷️ Data Labeling
Label Studio/SageMaker] D --> E[📊 Dataset Creation] end subgraph "Phase 2: Experimentation" E --> F[⚙️ Feature Engineering] F --> G[🧮 Feature Store
Feast/Tecton] G --> H[🔬 Experiment Tracking
MLflow/Weights & Biases] H --> I[🤖 Model Training
PyTorch/TensorFlow] end subgraph "Phase 3: Model Management" I --> J[📈 Model Evaluation] J --> K{Performance Check} K -->|Pass| L[📦 Model Registry
MLflow Registry] K -->|Fail| M[🔄 Retrain Model] M --> F L --> N[🧪 Model Testing
Unit/Integration] N --> O[✅ Model Approval] end subgraph "Phase 4: Deployment" O --> P[🚀 Model Packaging
Docker/ONNX] P --> Q[🌐 Model Serving
KServe/Triton] Q --> R[⚖️ Load Balancing] R --> S[🔄 Canary Deployment] S --> T[📊 A/B Testing] end subgraph "Phase 5: Monitoring" T --> U[👀 Model Monitoring
Evidently/WhyLabs] U --> V[📈 Performance Metrics] V --> W[🚨 Alert System] W --> X{Drift Detected?} X -->|Yes| M X -->|No| Y[✅ Model in Production] end %% Styling classDef phase1 fill:#e3f2fd,stroke:#2196f3 classDef phase2 fill:#e8f5e8,stroke:#4caf50 classDef phase3 fill:#fff3e0,stroke:#ff9800 classDef phase4 fill:#f3e5f5,stroke:#9c27b0 classDef phase5 fill:#ffebee,stroke:#f44336 class A,B,C,D,E phase1 class F,G,H,I phase2 class J,K,L,M,N,O phase3 class P,Q,R,S,T phase4 class U,V,W,X,Y phase5

4. How to Implement in Blogger

Copy and paste this complete code into your Blogger HTML editor. The code includes all necessary Mermaid JS configuration and sample diagrams.

📝 Instructions:
  1. Go to your Blogger Dashboard
  2. Click on "Theme" → "Edit HTML"
  3. Paste the entire code below
  4. Save and view your blog
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>AI Architecture Diagrams</title> <!-- Mermaid JS --> <script src="https://cdn.jsdelivr.net/npm/mermaid@10.6.1/dist/mermaid.min.js"></script> <script> mermaid.initialize({ startOnLoad: true, theme: 'default', securityLevel: 'loose', flowchart: { curve: 'basis' } }); </script> <style> body { font-family: Arial, sans-serif; max-width: 1200px; margin: 0 auto; padding: 20px; background: #f5f5f5; } .mermaid { background: white; padding: 20px; border-radius: 8px; margin: 20px 0; overflow: auto; } .diagram-title { color: #333; margin: 30px 0 10px 0; } </style> </head> <body> <h1>AI Architecture Diagrams</h1> <h2 class="diagram-title">Complete AI System</h2> <div class="mermaid"> graph TB A[User Input] --> B[API Gateway] B --> C[Load Balancer] C --> D[LLM Service] C --> E[Vision Service] C --> F[Speech Service] D --> G[Vector Database] E --> H[Image Storage] F --> I[Audio Processor] G --> J[Response Generator] H --> J I --> J J --> K[User Output] </div> <h2 class="diagram-title">MLOps Pipeline</h2> <div class="mermaid"> flowchart LR A[Data Collection] --> B[Data Processing] B --> C[Model Training] C --> D[Model Evaluation] D --> E[Model Deployment] E --> F[Monitoring] F --> A </div> </body> </html>
✨ Pro Tips:
  • Use the Blogger "HTML" editor mode when pasting this code
  • Customize colors and styling by modifying the CSS section
  • Add more diagrams by copying the mermaid div structure
  • Test on mobile devices to ensure responsive display

AI Architecture Diagrams using Mermaid JS | Compatible with Blogger/BlogSpot

Last Updated: 2024 | Mermaid Version: 10.6.1

Comments

Popular posts from this blog

Tablet Holder di Mobil dan Konsep DOUBLE Tablet Holder aka +secondary supporting holder

Gw udah pasang Holder khusus Tablet yg menurut gw sudah pilihan terbaik! Karena memiliki Arm KERAS/RIGID yg dibutuhkan utk menggenggam ERAT Dalam hal menopang Tablet yg lebih berat dr HP biasa Cekidot Lapak (click here!!) Namun .. Setelah gw pasang Bukan tidak bagus Tapi kalau melewati jalan jelek GOYANG (sikit) juga Gan! Akan tetapi .... Gw rasa bisa makin dimaksimalkan KERIGIDAN dengan menambah PENOPANG KEDUA Check it out: Dari searching2 di MarketPlace Gw ketemu yg mirip holder lampu belajar zaman doeloe Dan .. namun .. tiba2 gw menemukan Ide (lanjutan) Mekanisme yg bisa diReApplied kalau suatu saat diperlukan di Kreasi Agan2 lain  Gunakan Kombo 2 Perangkat berikut apabila membutuhkan holdingan tablet tambahan yg memiliki  "hold area"  yg lebih sempit karena holder kedua "takutnya/dirasa" tidak akan muat utk menggenggam Tablet sebagai penopang kedua, sebagai akibat holder pertama/utama sudah "cukup banyak" memakan tempat Perangkat Pertama (kon...

Repost! Web-Based to Android Apps Convertion (MEDIAN.CO etc.)

CONTOH HASIL Android APK "PROGRAM" SAMPLE: Youtube and Instagram EMBEDded to Blogger/Blogspot.com SOURCE CODE Click this box to download Contoh Sample SHORTCUT-APPs "precise" click to download : median.co R8: ronin1985.blogspot.com R2M: ronin-manu.blogspot.com Gw udah coba Median.co utk mengubah Website gw menjadi Aplikasi Android Keren bet!! Median.co Cekidot Software lain yg mirip! ChatGPT : If you're looking for tools similar to Median.co to convert websites into Android apps, here are some top alternatives, especially for no-code or low-code users: 🔧 Best Tools Like Median.co to Convert Website to Android Apps 1. WebViewGold Platform: Windows/macOS (Xcode/Android Studio) Key Feature: Converts any website into iOS/Android app via WebView. Pros: One-time purchase Custom splash screen, push notifications Can open external links in external browser Cons:  Requi...

REPOST: Studying WATER PUMP by ROMAN ENGINEERING

*^ Ini yg Asli Gan! Mekanisme pada Concrete Pump: Kok ky Sistem Mekanik Romawi ya?! Tapi malah bisa HANYA pake PER aka bukan "MATA BOR look a like" Mekanisme Drill yg Cost Pembuatan bikin REPOT aka harus Tool SUPER Khusus Dari Material Besi yg digunakan terlihat langsung secara kasat mata Jauh Lebih Banyak drpd Per Biasa seperti yg ditunjukkan pd Video Alternatif dgn Penggunaan PER Video dr Instagram: Source: YouTube Rome's drainage machines #history #romanempire #engineering