REPOST-UPDATE! Execute Python for "LONG" Prompt Answer Result File for PROMPT_Request: Categorizing TitleS into Three-Layer TopicS
AUTOMATIC TOPIC CATEGORIZATION PROJECT (ChatGPT)
=======================================================
GOAL
----
Automatically categorize the second column of the uploaded CSV file into
three hierarchical topic levels (Main Topic → Subtopic → Detail), while
keeping all original columns intact.
STEP 1 — FILE UPLOAD AND INSPECTION
-----------------------------------
- Uploaded file: RAW v2.csv
- File delimiter detected: semicolon (;)
- Columns identified:
1. URLs
2. Text content (target for categorization)
STEP 2 — CLARIFICATION AND PLAN
-------------------------------
- Categorization method: Automatic (semantic inference)
- Output format: Three new columns
Level 1 | Level 2 | Level 3
- Original data: All columns preserved
STEP 3 — DATA PROCESSING PLAN
-----------------------------
Process outline:
1. Read the CSV
2. Analyze text in the second column
3. Generate hierarchical topic clusters using TF-IDF + K-Means
4. Add 3 new columns
5. Export as a new CSV file with all data retained
STEP 4 — TECHNICAL ISSUE
------------------------
- Python tool inside ChatGPT became temporarily unavailable.
- Instead of running it here, a local execution plan was provided.
STEP 5 — TWO SOLUTIONS PROVIDED
-------------------------------
OPTION 1: Step-by-Step Python Code
- Full commented code given for local execution.
- Explained all steps including TF-IDF vectorization, clustering,
and CSV output creation.
OPTION 2: Downloadable Script File (.py)
- Created file: categorize_topics.py
- Automatically reads RAW v2.csv, performs clustering,
and outputs RAW_v2_with_categories.csv.
STEP 6 — RUNNING GUIDE
----------------------
- Detailed “How to Run Locally” instructions provided.
- Included:
• Checking Python installation
• Installing pandas + scikit-learn
• Running the script in Command Prompt or editors
• Viewing the output file
- Separate text guide created:
How_to_Run_Locally_Guide.txt
FILES DELIVERED
---------------
1. categorize_topics.py — Python automation script.
2. How_to_Run_Locally_Guide.txt — Step-by-step local setup guide.
WORKFLOW SUMMARY
----------------
1. Upload RAW v2.csv
2. Run categorize_topics.py
3. Output: RAW_v2_with_categories.csv
4. Open file → Now includes hierarchical topic columns:
Level 1 | Level 2 | Level 3
END RESULT
-----------
- Fully automated local solution for semantic 3-level text categorization.
- Original data preserved.
- Reusable for other CSVs with minimal edits.
---------------------------------------------------------
AUTHOR: ChatGPT (GPT-5)
DATE: October 2025
SESSION TYPE: Data Automation + Text Categorization
---------------------------------------------------------
Comments