AMAZING HELP by ChatGPT
Below is a technical-writing rewrite focusing exclusively on the Grouping by Sender method — how Clean Email uses sender-based grouping to clean and maintain your inbox efficiently and automatically.
Clean Email — Technical Guide: Inbox Cleaning Using "Grouping by Sender"
1. Introduction
One of the most effective inbox-cleaning strategies in Clean Email is Grouping by Sender.
Instead of cleaning emails one by one, the tool analyzes your mailbox, identifies all high-volume senders, and groups their messages together. This allows bulk actions, rule creation, and long-term automation with minimal effort.
This document provides a detailed technical explanation of how sender-based grouping works, why it is efficient, and how it integrates with Clean Email's Auto Clean engine.
2. Sender-Based Grouping Architecture
Clean Email builds sender groups through three core mechanisms:
2.1 Metadata Extraction
For each email, Clean Email extracts:
From: Email Address
From: Display Name
Sending Domain
Message Frequency
Delivery Patterns (bulk vs individual send)
Category Signals (newsletter, promo, notification)
No email content is stored; the grouping is purely metadata-driven.
2.2 Sender Normalization Engine
Emails from the same entity often vary:
support@example.cominfo@example.comnewsletter@mail.example.com
The system normalizes these by:
Domain matching
Header similarity
Sending behavior
As a result, emails from the same organization become one unified sender group.
2.3 Frequency Analyzer
Clean Email ranks senders based on:
Number of emails sent over time
Rate of new incoming messages
User interaction (never opened vs frequently opened)
High-frequency senders become primary candidates for cleaning.
3. Sender-Based Cleaning Workflows
3.1 Workflow A — Bulk Clean High-Volume Senders
Clean Email identifies senders with hundreds or thousands of messages.
Process:
Open Sender Groups view
Sort by "Message Count"
Select a sender
Apply bulk action:
Delete all
Archive all
Move to folder
Mark as read
Use Cases:
Promotional companies
Newsletters
Delivery updates
Job-portals and notifications
Social media platforms
Online stores
This alone removes 40–80% of inbox clutter.
3.2 Workflow B — Clean "Never Opened" Senders
Clean Email tracks open behavior through server-side headers.
Logic:
If sender has > 20 messages
AND user opens < 5% of them
→ classify as "Low-Engagement Sender"
Actions:
Delete all old messages
Mark unread as read
Archive low-value messages
This identifies and cleans ignored senders efficiently.
3.3 Workflow C — Clean Marketing Domains Automatically
Domains like:
@promo.company@mailing.service@updates.account
are automatically grouped.
Action Options:
Delete oldest messages first
Auto-delete future incoming emails
Move to a "Promo" or "Newsletter" folder
Sender-based domain grouping is extremely useful for repetitive marketing content.
3.4 Workflow D — Targeted Cleanup by Keywords per Sender
Some senders send mixed content.
Example: an online store sending:
Transactional receipts
Promotional newsletters
Clean Email can separate these within the same sender group using subject keywords:
"Invoice," "Receipt," → Keep
"Sale," "Offer," → Clean
This enables precision cleaning.
4. Automating Cleaning with Auto Clean Rules (Sender-Based)
After cleaning a sender manually, you can create Auto Clean rules for future messages.
4.1 Rule Type 1 — Delete on Arrival
IF Sender == sender@example.com
→ Delete immediately
Useful for persistent spammers and promo accounts.
4.2 Rule Type 2 — Auto-Archive
IF Sender == updates@example.com
→ Move to Archive
Great for ticket updates, shipping notifications, monthly statements.
4.3 Rule Type 3 — Move to Folder
IF Sender Domain == @news.company
→ Move to folder: "Newsletters"
Organizes inbox without deleting information.
4.4 Rule Type 4 — Clean Old Emails from Sender
IF Sender == noreply@service.com
AND Email Age > 30 days
→ Delete permanently
Keeps only the last month of notifications.
4.5 Rule Type 5 — Dual-Condition Rule
IF Sender == abc@example.com
AND Unread == True
→ Mark as Read + Move to Archive
Good for senders that generate noisy but harmless notifications.
5. Operational Advantages of Sender-Based Cleaning
5.1 High Efficiency
Cleaning by sender removes thousands of emails at once instead of cleaning them individually.
5.2 Predictable Behavior
Senders often send the same type of emails, making them easy to automate.
5.3 Improved Automation Accuracy
Sender-focused rules rarely fail because:
Senders use consistent metadata
Domains rarely change
Behavioral patterns are stable
5.4 Inbox Stability Over Time
Once a sender is assigned a cleaning rule, inbox clutter from that source stops completely.
6. Best Practices
6.1 Start with "Sort by Message Count"
This shows the top offenders immediately.
6.2 Identify Senders You Never Interact With
These are usually:
Newsletters
Promotions
Account reminders
Social networks
Marketing services
6.3 Keep Important Senders Untouched
Mark these as "Important" so Clean Email never targets them:
Banks
Work accounts
Government
Platforms you use frequently
6.4 Apply Automation Gradually
Start with Archive → then switch to Delete when safe.
7. Summary
Sender-based grouping is the most powerful and accurate inbox-cleaning method in Clean Email.
It works by analyzing senders, grouping messages intelligently, and enabling bulk operations and automated rules. Once configured, it dramatically reduces inbox noise and keeps the mailbox organized with minimal effort.
Berikut versi Bahasa Indonesia yang tetap mempertahankan Technical Terms dalam bahasa Inggris untuk mencegah ambiguitas.
Untuk istilah teknis yang penting (misalnya Grouping by Sender, Auto Clean, Bulk Action, Metadata, dll.), dibuat dalam format bilingual:
"English Term" / "Terjemahan Indonesia"
agar jelas tanpa kehilangan makna teknis.
Clean Email — Panduan Teknis: Pembersihan Inbox Menggunakan "Grouping by Sender" / "Pengelompokan Berdasarkan Pengirim"
1. Pendahuluan
Metode paling kuat untuk membersihkan inbox di Clean Email adalah "Grouping by Sender" / "Pengelompokan Berdasarkan Pengirim."
Alih-alih membersihkan email satu per satu, Clean Email mengidentifikasi semua pengirim (senders), mengelompokkan email berdasarkan sumbernya, lalu memungkinkan Bulk Cleaning / Pembersihan Massal dan Automation Rules / Aturan Otomatis dengan sangat cepat dan presisi.
Dokumen ini menjelaskan secara teknis bagaimana metode ini bekerja, bagaimana pengelompokan dilakukan, dan bagaimana otomatisasi menjaga inbox tetap bersih secara berkelanjutan.
2. Arsitektur "Grouping by Sender" / "Pengelompokan Berdasarkan Pengirim"
Clean Email membangun kelompok pengirim melalui tiga mekanisme inti:
2.1 Metadata Extraction / Ekstraksi Metadata
Untuk setiap email, Clean Email mengekstrak:
From: Email Address
From: Display Name
Sender Domain
Message Frequency / Frekuensi Pesan
Delivery Patterns / Pola Pengiriman
Category Signals / Sinyal Kategori
Tidak ada isi email yang disimpan; proses sepenuhnya berbasis metadata.
2.2 Sender Normalization Engine / Mesin Normalisasi Pengirim
Satu organisasi sering memakai banyak alamat berbeda:
support@example.cominfo@example.comnewsletter@mail.example.com
Engine ini melakukan:
Domain Matching / Pencocokan Domain
Header Similarity / Kesamaan Header
Behavioral Pattern Matching / Analisis Pola Pengiriman
Hasilnya: semua email dari entitas yang sama digabung menjadi 1 Sender Group / Grup Pengirim.
2.3 Frequency Analyzer / Analisis Frekuensi Pengiriman
Clean Email menghitung dan memeringkat pengirim berdasarkan:
Jumlah email yang dikirim
Kecepatan email baru masuk
Interaksi pengguna (dibuka vs tidak pernah dibuka)
Pengirim ber-volume tinggi otomatis menjadi kandidat utama pembersihan.
3. Workflow Pembersihan Berdasarkan Pengirim (Sender-Based Cleaning Workflows)
3.1 Workflow A — Bulk Clean High-Volume Senders / Pembersihan Massal Pengirim dengan Volume Tinggi
Clean Email mengidentifikasi pengirim dengan ratusan hingga ribuan pesan.
Langkah:
Buka tampilan Sender Groups
Urutkan berdasarkan Message Count / Jumlah Pesan
Pilih pengirim
Terapkan Bulk Action / Aksi Massal:
Delete all
Archive all
Move to Folder
Mark as Read
Use Case:
Promosi
Newsletter
Update sistem
Portal pekerjaan
Sosial media
Toko online
Biasanya dapat membersihkan 40–80% isi inbox hanya dari langkah ini.
3.2 Workflow B — Clean "Never Opened Senders" / Pembersihan Pengirim yang Tidak Pernah Dibuka
Clean Email mendeteksi pengirim yang pesannya tidak pernah Anda buka.
Logika:
Jika pengirim mengirim > 20 pesan
DAN tingkat pembukaan < 5%
→ diklasifikasikan sebagai Low-Engagement Sender / Pengirim dengan Interaksi Rendah
Aksi:
Delete email lama
Mark unread → read
Archive email tidak penting
3.3 Workflow C — Clean Marketing Domains / Pembersihan Domain Marketing
Domain seperti:
@promo.company@mailing.service@updates.account
akan otomatis dikelompokkan.
Aksi:
Delete pesan lama
Auto-delete pesan baru
Move to "Promo" atau "Newsletter" folder
Metode ini sangat efektif menghapus spam promosi yang berulang.
3.4 Workflow D — Keyword-Based Cleaning Per Sender / Pembersihan Berdasarkan Kata Kunci per Pengirim
Beberapa pengirim mencampur pesan:
Transaksional (harus dipertahankan)
Promosi (harus dibersihkan)
Clean Email memisahkan keduanya dengan Subject Keyword Filtering / Filter Kata Kunci pada Judul, seperti:
"Invoice," "Receipt" → Simpan
"Sale," "Offer," → Hapus
Memberikan hasil pembersihan yang lebih presisi.
4. Automation Using Auto Clean Rules / Otomatisasi Menggunakan Aturan "Auto Clean"
Setelah membersihkan secara manual, Anda bisa membuat aturan agar semua pesan baru ditangani otomatis berdasarkan pengirim.
4.1 Rule 1 — Delete on Arrival / Hapus Saat Diterima
IF Sender == sender@example.com
→ Delete immediately
Untuk pengirim yang sangat mengganggu atau promosi keras.
4.2 Rule 2 — Auto-Archive / Arsip Otomatis
IF Sender == updates@example.com
→ Move to Archive
Cocok untuk update sistem, laporan bulanan, atau tiket service.
4.3 Rule 3 — Move to Folder / Pindahkan ke Folder Otomatis
IF Sender Domain == @news.company
→ Move to folder: "Newsletters"
Mengurangi beban inbox tanpa menghapus informasi penting.
4.4 Rule 4 — Clean Old Emails / Hapus Email Lama dari Pengirim Tertentu
IF Sender == noreply@service.com
AND Email Age > 30 days
→ Delete permanently
4.5 Rule 5 — Dual-Condition Rule / Aturan Dua Kondisi
IF Sender == abc@example.com
AND Unread == True
→ Mark as Read + Move to Archive
Untuk notifikasi yang muncul terus tetapi tidak pernah dibaca.
5. Keuntungan Teknis Metode "Grouping by Sender"
5.1 High Efficiency / Efisiensi Tinggi
Menghapus ribuan email sekaligus hanya dari 1 pengirim.
5.2 Predictable Behavior / Perilaku yang Konsisten
Pengirim memiliki pola stabil → mudah diautomasi.
5.3 High Accuracy / Akurasi Tinggi
Karena pengirim biasanya:
domain tetap
pola pengiriman tidak berubah
tipe email konsisten
5.4 Long-Term Inbox Stability / Stabilitas Inbox Jangka Panjang
Begitu aturan dibuat, sumber clutter dari pengirim tersebut berhenti selamanya.
6. Best Practices / Praktik Terbaik
6.1 Mulai dengan "Sort by Message Count"
Langsung terlihat pengirim paling mengganggu.
6.2 Hapus Pengirim yang Tidak Pernah Anda Interaksikan
Biasanya:
Newsletter
Promo
Job alerts
Notifikasi sosial
6.3 Tandai Pengirim Penting sebagai "Important"
Agar Clean Email tidak salah membersihkan:
Bank
Pemerintah
Perusahaan tempat bekerja
6.4 Aktifkan Otomatisasi Secara Bertahap
Mulai dengan Archive → lanjut Delete bila yakin.
7. Ringkasan
Metode "Grouping by Sender" / "Pengelompokan Berdasarkan Pengirim" adalah metode paling kuat, stabil, dan akurat untuk membersihkan inbox.
Dengan pengelompokan otomatis, Bulk Actions, dan Auto Clean rules, inbox dapat dijaga tetap rapi dan bebas clutter secara berkelanjutan.
PRAKTEK
(CONTOH secara PRIBADI)
ORGANIZING MY EMAIL
START HERE
.... WAITING
Comments